2022年已发表和印刷中论文目录

发布时间:2023-02-02 |      】 | 【打印】 【关闭

一、已发表论文

1. Shen* M, Wang S, Jiang N, Sun J, Cao R, Ling X, Fang B, Zhang L, Zhang L, Xu X, Lv W, Li B, Sun Q, Meng F, Jiang Y, Dorji T, Fu Y, Iler A, Vitasse Y, Steltzer H, Ji Z, Zhao W, Piao S, Fu* B, 2022: Plant phenology changes and drivers on the Qinghai–Tibetan Plateau. Nature Reviews Earth & Environment, 3, 633651. (影响因子37.214)

2. Wang J*, Chen Y*, Nie J, Yan ZW, Zhai PM, Feng JM, 2022: On the role of anthropogenic warming and wetting in the July 2021 Henan record-shattering rainfall. Science Bulletin, 67(20), 2055-2059.(影响因子20.577

3. Xu* X., Huang A, Belle, E, De Frenne P, Jia* G., 2022: Protected areas provide thermal buffer against climate change. Science Advances, 8(44), eabo0119. (影响因子14.957)

4. Bao T, Jia G, Xu* X, 2022: Warming enhances dominance of vascular plants over cryptogams across northern wetlands. Global Change Biology, 28(13), 4097- 4109. (影响因子13.211)

5. Lu Z H, Dong W J*, Lu B*, Yuan N M*, Ma Z G, Bogachevf M I, and Kurths J, 2022: Early warning of the Indian Ocean Dipole using climate network analysis, The Proceedings of the National Academy of Sciences, 119(11): e2109089119. (影响因子 12.779)

6. Qiu Y, Feng J, Yan Z, Wang J*, 2022: HCPD-CA High-resolution climate projection dataset in Central Asia. Earth System Science Data, 14, 2195-2208.(影响因子11.815

7. Liang, L, Z. Han*, J. Li, X. Xia, Y. Sun, H. Liao, R. Liu, M. Liang, Y. Gao, and R. Zhang (2022), Emission, transport, deposition, chemical and radiative impacts of mineral dust during severe dust storm periods in March 2021 over East Asia. Science of the Total Environment, 852, doi:10.1016/j.scitotenv.2022.158459. (影响因子10.753)

8. Li JW, Han ZW*, Vanisha H, et al., 2022: Direct and indirect effects and feedbacks of biomass burning aerosols over Mainland Southeast Asia and South China in springtime. Science of the Total Environment, 842, 156949. (影响因子10.753)

9. Li, J., Z. Han*, Wu, J., Tao, J., Li, J., Sun, Y., Liang, L., Liang, M., and Wang, Q. (2022). Secondary organic aerosol formation and source contributions over east China in summertime. Environmental Pollution, 306, 119383, https://doi.org/10.1016/j.envpol.2022.119383. (影响因子9.998)

10. Mao, J., R. Chai, H. Chen, Y. Wang, X. Shi, M. Jin, T. Zhao, F. Hoffman, D. Ricciuto, and S. Wullschleger, 2022: Human-caused long-term changes in global aridity. npj Climate and Atmospheric Science, doi: 10.1038/s41612-021-00223-5.(影响因子9.45)

11. Pei L, Yan Z, Chen D*, Miao S, 2022: The contribution of human-induced atmospheric circulation changes to the record-breaking winter precipitation event over Beijing in February 2020. Bulletin of American Meteorological Society, 103 (3), S55-S60.(影响因子9.116

12. Qian C*, Ye Y, Zhang W, Zhou T, 2022: Heavy rainfall event in mid-August of 2020 in southwestern China: contribution of anthropogenic forcings and atmospheric circulation. Bull. Amer. Meteor. Soc., 103(3), S111–S117, https://doi.org/10.1175/BAMS-D-21-0233.1 (影响因子9.116)

13. Peng Jing, Wang Yongli, Dan Li, Feng Jinming, Yang Fuqiang, Tang Xiba, Wu Qizhong, Tian Jing, 2022: Overestimated terrestrial carbon uptake in the future owing to the lack of spatial variations CO2 in an Earth system model. Earth's Future, 10, e2021EF002440, https://doi.org/10.1029/2021EF002440. (影响因子8.852)

14. Liang Y, Xu* X, Jia G, 2022: Deforestation drives desiccation in global monsoon region. Earth's Future, 10(10), e2022EF002863. (影响因子8.852)

15. Li, K., Zhang, J., Wu, L., Yang, K., & Li, S. 2022: The role of soil temperature feedbacks for summer air temperature variability under climate change over East Asia. Earth's Future, 10, e2021EF002377. https://doi.org/10.1029/2021EF002377. (影响因子8.84)

16. Luo, B. H., Luo D. H.*, A. G. Dai, I. Simmonds, and L. X. Wu, 2022b: Decadal Variability of Winter Warm Arctic-Cold Eurasia Dipole Patterns Modulated by Pacific Decadal Oscillation and Atlantic Multidecadal Oscillation. Earths Future, 10. (影响因子8.8)

17. Chen Xinghong, Ye Dong, Shen Yanbo, Li Deping, Feng Jinming, 2022: Studies on the improvement of modelled solar radiation and the attenuation effect of aerosol using the WRF-Solar model with satellite-based AOD data over north China. Renewable Energy, 196, 358e365, https://doi.org/10.1016/j.renene.2022.06.141. (影响因子8.634)

18. Cheng Wei, Dan Li, Deng Xiangzheng, Feng Jinming, Wang Yongli, Peng Jing, Tian JingTian, Qi Wei, Liu Zhu, Zeng Xinqi, Zhou Demin, Jiang Sijian, Zhao Haipeng, Wang Xiaoyu, 2022: Global monthly gridded atmospheric carbon dioxide concentrations under the historical and future scenarios. Scientific Data, 9 (83), https://doi.org/10.1038/s41597-022-01196-7. (影响因子8.501)

19. Zhang X*, Xie Z, Ma Z G, Barron-Gafford G A, Scott R L, Niu G Y, 2022: A microbial-explicit soil organic carbon decomposition model (MESDM): Development and testing at a semiarid grassland site. Journal of Advances in Modeling Earth Systems, 14, e2021MS002485. https://doi.org/10.1029/2021MS0. (影响因子8.469)

20. Zhao, L., Yang, K., He, J., Zheng, H., & Zheng, D. 2022: Potential of mapping global soil texture type from SMAP soil moisture product: A pilot study. IEEE Transactions on Geoscience and Remote Sensing, 60, 1–10. https://doi.org/10.1109/TGRS.2021.3119667. (影响因子8.13)

21. Wei W, Yan Z, Tong X, Han Z, Ma M, Yu S, Xia J*, 2022: Seasonal Prediction of Summer Extreme Precipitation over the Yangtze River based on Random Forest. Weather and Climate Extremes. 37, 100477.(影响因子7.761

22. Li H, Zhou Y, Jia G, Zhao K, Dong J, 2022: Quantifying the response of surface urban heat island to urbanization using the annual temperature cycle model, Geoscience Frontiers, 13(1), 101141. (影响因子7.483)

23. Hou, Yurong, Cai, Wenju, Holland, David M, Cheng, Xiao, Zhang, Jiankai, Wang, Lin, Johnson, Nathaniel C, Xie, Fei, Sun, Weijun, Yao, Yao, Liang, Xi, Yang, Yun, Chang, Chueh-Hsin, Xin, Meijiao, and Li, Xichen, 2022, A surface temperature dipole pattern between Eurasia and North America triggered by the BarentsKara sea-ice retreat in boreal winter. Environmental Research Letters, 17(11), pp 114047, 1748-9326. (影响因子 6.947)

24. Huang A., Xu* X., Jia G, Shen R, 2022: Asymmetrical cooling effects of Amazonian protected areas across spatiotemporal scales. Environmental Research Letters, 17, 054038. (影响因子6.947)

25. Huang A, Shen R, Jia G, Xu* X, 2022: Reforestation enhanced landscape connectivity for thermal buffering in China. Environmental Research Letters, 17: 014056. (影响因子6.947)

26. Xu, X, Zhang X, Riley WJ, Xue Y, Nobre CA, Lovejoy TE, Jia* G, 2022: Deforestation triggering irreversible transition in Amazon hydrological cycle. Environmental Research Letters, 17, 034037. (影响因子6.947)

27. Zhang, W. Q., Yao Y. *, Luo D. H., I. Simmonds, and F. Huang, 2022: Combined impact of the cold vortex and atmospheric blocking on cold outbreaks over East Asia and the potential for short-range prediction of such occurrences. Environ Res Lett, 17. (影响因子6.9)

28. Zheng J, Jia G, Xu* X, 2022: Earlier Snowmelt Predominates Advanced Spring Vegetation Greenup in Alaska. Agricultural and Forest Meteorology, 315, 108828. (影响因子6.424)

29. Li M X*, Wu P L, Ma Z G, Lv M X, Yang Q, Duan Y W, 2022: The decline in the groundwater table depth over the past four decades in China simulated by the Noah-MP land model. Journal of Hydrology, 607, 127551. (影响因子6.37)

30. Zhou L, Zhou W, Chen J, Xu X, Wang Y, Zhuang J, Chi* Y, 2022: Land surface phenology detections from multi-source remote sensing indices capturing canopy photosynthesis phenology across major land cover types in the Northern Hemisphere. Ecological Indicators, 135, 108579. (影响因子6.263)

31. Zhang X, Xu X, Chen* H, Hu X, Gao L, 2022: Dust-planetary boundary layer interactions amplified by entrainment and advections. Atmospheric Research, 278, 106359. (影响因子5.965)

32. Zhang X, Cai C, Hu X, Gao L, Xu X, Hu J, Chen* H, 2022: Aerosols consistently suppress the convective boundary layer development. Atmospheric Research, 269, 106032. (影响因子5.965)

33. Ji D, Li JW*, Shen GF, et al., 2022: Environmental effects of Chinas coal ban policy: Results from in situ observations and model analysis in a typical rural area of the Beijing-Tianjin-Hebei region, China. Atmospheric Research, 268, 106015. (影响因子5.965)

34. Li, J., Han, Z.*, Wu, J., Wang, Q., Li, J., and Tao, J. (2022). Changes in summer biogenic volatile organic compound emission and secondary organic aerosols over the 2001–2018 period over China: Roles of leaf biomass, meteorology, and anthropogenic emission variability. Atmospheric Research, 280, 106450, https://doi.org/10.1016/j.atmosres.2022.106450. (影响因子5.965)

35. Zhang X, Duan Y W, Duan J P*, Chen L, Jian D N, Lv M X, Yang Q, Ma Z G, 2022: A daily drought index-based regional drought forecasting using the Global Forecast System model outputs over China, Atmospheric Research, https://doi.org/10.1016/j.atmosres.2022.106166. (影响因子5.965)

36. Fu., S., H. Tang, J. Sun, T. Zhao, and W. Li, 2022: Historical rankings and vortices activities of the extreme Mei-yu seasons: Contrast 2020 to previous Mei-yu seasons. Geophys. Res. Lett., doi:10.1029/2021GL096590. (影响因子5.58)

37. Feng X, Qian C*, Materia S, 2022: Amplification of the temperature seasonality in the Mediterranean region under anthropogenic climate change. Geophys. Res. Lett., 49, e2022GL099658. https://doi.org/10.1029/2022GL099658. (影响因子5.576)

38. Luo Meng, Feng Jinming*, Xu Zhongfeng, Wang Jun, Dan Li, 2022: Numerical simulation and cause analysis of the persistent summer drought during 1920s in eastern China, SCIENCE CHINA Earth Sciences, 65, 966-982. https://doi.org/10.1007/s11430-021-9891-9. (影响因子5.492)

39. Qin H, Yuan W, Wang J, Chen Y, Dai P, Sobel A H, Meng Z, Nie J, 2022: Climate change attribution of the 2021 Henan extreme precipitation: Impacts of convective organization. Science China Earth Sciences, 65, 1837-1846. (影响因子5.492)

40. Hua, L., T. Zhao*, and L. Zhong, 2022: Future changes in drought over Central Asia under CMIP6 forcing scenarios. Journal of Hydrology: Regional Studies, http://doi.org/10.1016/j.ejrh.2022.101191. (影响因子5.4)

41. Tian, J., Z. Zhang, T. Zhao, H. Tao, and B. Zhu 2022: Warmer and wetter climate induced by the continual increase in atmospheric temperature and precipitable water vapor over the arid and semi–arid regions of Northwest China. Journal of Hydrology: Regional Studies, 42, 101151, doi:10.1016/j.ejrh.2022.101151. (影响因子5.4)

42. Lin Wang*, Gang Huang, Wen Chen, Ting Wang, Chakrit Chotamonsak, Atsamon Limsakul, 2022: Decadal background for active extreme drought episode in the decade of 20102019 over southeastern mainland Asia. Journal of Climate, 1-54. (影响因子5.4)

43. Wang, H. J., and Luo D. H.*, 2022: North Atlantic Footprint of Summer Greenland Ice Sheet Melting on Interannual to Interdecadal Time Scales: A Greenland Blocking Perspective. J Climate, 35, 1939-1961. (影响因子 5.4)

44. Duan Y W, Yang Q*, Ma Z G, Wu P L, Chen X L, Duan J P, 2022: Disentangling the Driving Mechanisms of Tripole Mode of Summer Rainfall Over Eastern China, Journal of Climate, https://doi.org/10.1175/JCLI-D-22-0405.1. (影响因子 5.38)

45. Zha Jinlin, Cheng Shen, Zhao Deming, Feng Jinming, Xu Zhongfeng, Wu Jian, Fan Wenxuan, Luo Meng, Zhang, Liya, 2022: Contributions of External Forcing and Internal Climate Variability to Changes in the Summer Surface Air Temperature Over East Asia. Journal of Climate, 35, 5013-5032, https:/doi.org/10.1175/JCLI-D-21-0577.1. (影响因子5.380)

46. Zhao, T., and A. Dai, 2022: CMIP6 model-projected hydroclimatic and drought changes and their causes in the 21st century. J. Climate, doi: https://doi.org/10.1175/JCLI-D-21-0442.1. (影响因子5.38)

47. Pan Y, Wang Y, Zheng S, Huete A, Shen M, Zhang X, Huang J, He G, Yu L, Xu X, Xie W, Peng* D, 2022: Characteristics of Greening along Altitudinal Gradients on the Qinghai-Tibet Plateau Based on Time-Series Landsat Images, Remote Sensing, 14(10), 2408. (影响因子5.349)

48. Wu Liyang, Feng Jinming*, Qin Fen, Qiu Yuan, 2022: Regional climate effects of irrigation over Central Asia using Weather Research and Forecasting model, Journal of Geophysical Research: Atmospheres, 127, e2021JD036210,  https://doi.org/10.1029/2021JD036210. (影响因子5.217)

49. Peng, J., L. Dan, K. Ying, X. Tang, and D. Xu (2022), Spatially varying in CO2 concentrations regulates carbon uptake in the Northern Hemisphere, Journal of Geophysical Research: Atmospheres, e2022JD037732. (影响因子5.217)

50. Ma X, Mu M, Dai G, Han Z, Li C, Jiang Z, 2022: Influence of Arctic Sea Ice Concentration on Extended-Range Prediction of Strong and Long-Lasting Ural Blocking Events in Winter. Journal of Geophysical Research: Atmospheres, 127, e2021JD036282. (影响因子5.2)

51. Yang, M. H., C. Y. Li, Luo D. H., Yao Y., X. Li, X. Chen, and Y. Lu, 2022: Mechanical and Thermal Impacts of the Tibetan-Iranian Plateau on the North Pacific Storm Track: Numerical Experiments by FGOALS-f3-L. J Geophys Res-Atmos, 127. (影响因子5.2)

52. Ma, X, Mu M, Dai G, Han Z, Li C, Jiang Z, 2022: Influence of Arctic sea ice concentration on extended-range prediction of strong and long-lasting Ural blocking events in winter. Journal of Geophysical Research: Atmospheres, 127, e2021JD036282. https://doi. org/10.1029/2021JD036282. (影响因子5.2)

53. Qiu Y, Feng J*, Yan Z, Wang J, Li Z, 2022: High-resolution dynamical downscaling for regional climate projection in Central Asia based on bias-corrected multiple GCMs. Climate Dynamics, 58:777-791.(影响因子4.9

54. Zhang X, Chen L*, Ma Z G, Duan J P, Dai D Q, Zhang H X, 2022: Effects of the surface coupling strength in the WRF/NoahMP model on regional climate simulations over China, Climate Dynamics, https://doi.org/10.1007/s00382-021-06129-5. (影响因子4.9)

55. Qiu, Y., Feng, J.*, Yan, Z. et al. High-resolution dynamical downscaling for regional climate projection in Central Asia based on bias-corrected multiple GCMs. Clim Dyn 58, 777-791 (2022). https://doi.org/10.1007/s00382-021-05934-2. (影响因子4.9)

56. Ying, K., D. Jiang, X. Zheng, Carsten S. Frederiksen, J. Peng, T. Zhao, and L. Zhong, 2022: Seasonal predictable source of the East Asian summer monsoon rainfall in addition to the ENSO-AO. Climate Dynamics, doi: 10.1007/s00382-022-06461-4. (影响因子4.9)

57. Yang, Z., Zhang, J., Liu, Y., Li K.., 2022: The substantial role of May soil temperature over Central Asia for summer surface air temperature variation and prediction over Northeastern China. Clim Dyn. https://doi.org/10.1007/s00382-022-06360-8. (影响因子4.9)

58. Ge, Y., and Luo D. H.*, 2022: Impacts of the different types of El Nino and PDO on the winter sub-seasonal North American zonal temperature dipole via the variability of positive PNA events. Clim Dynam. 10.1007/s00382-022-06393-z. (影响因子4.9)

59. Luo, B. H., Luo D. H.*, A. G. Dai, I. Simmonds, and L. X. Wu, 2022a: The modulation of Interdecadal Pacific Oscillation and Atlantic Multidecadal Oscillation on winter Eurasian cold anomaly via the Ural blocking change. Clim Dynam, 59, 127-150. (影响因子4.9)

60. Wang, Q., G. Huang, L. Wang*, J. Piao, T. Ma, P. Hu, C. Chotamonsak, A. Limsakul, 2022: Mechanism of the summer rainfall variation in Transitional Climate Zone in East Asia from the perspective of moisture supply during 1979–2010 based on the Lagrangian method. Clim Dyn, doi: 10.1007/s00382-022-06344-8. (影响因子4.9)

61. Zhang Meng-Zhuo, Zhongfeng Xu*, Ying Han, Weidong Guo, 2022: Evaluation of CMIP6 Models toward dynamical downscaling over 14 CORDEX domains. Clim. Dyn. DOI: https://doi.org/10.1007/s00382-022-06355-5.  (影响因子4.9)

62. Han Ying, Meng-Zhuo Zhang, Zhongfeng Xu*, Weidong Guo, 2022: Assessing the performance of 33 CMIP6 models in simulating the large-scale environmental fields of tropical cyclones. Clim. Dyn. 58, 1683–1698 Doi: https://doi.org/10.1007/s00382-021-05986-4. (影响因子4.9)

63. Li M X*, Wu P L, Ma Z G, Pan Z H, Lv M X, Yang Q, Duan Y W, 2022: The Increasing Role of Vegetation Transpiration in Soil Moisture Loss across China under Global Warming. Journal of Hydrometeorology, 23(2), 253-274. (影响因子4.871)

64. Liang, L., Z. Han*, J. Li, and M. Liang (2022), Investigation of the influence of mineral dust on airborne particulate matter during the COVID-19 epidemic in spring 2020 over China. Atmospheric Pollution Research, 13(6): 101424-101424, doi: 10.1016/j.apr.2022.101424. (影响因子4.831)

65. Li JW, Han ZW*, Chen L, et al., 2022: Modeling study of aerosol-meteorology feedback during winter haze events over the north China plain. Atmospheric Pollution Research, 13, 101311. (影响因子4.831)

66. Li Dongqing, Wu Qizhong, Wang Hui, Xiao Han, Xu Qi, Wang Lizhi, Feng Jinming, Yang Xiaochun, Cheng Huaqiong, Wang Lanning, Sun Yiming, 2021: The Spring Festival Effect: The change in NO2 column concentration in China caused by the migration of human activities. Atmospheric Pollution Research, 12, 101232, https://doi.org/10.1016/j.apr.2021.101232. (影响因子4.831)

67. Fan L*, Yan Z, Chen D, Li Z, 2022: Assessment of Central Asian heat extremes by statistical downscaling: validation and future projection for 2015-2100. Advances in Climate Change Research, 13 (1), 14-27.(影响因子4.746

68. Liang P, Yan Z*, Li Z, 2022: Climatic warming in Shanghai during 1873-2019 based on homogenised temperature records. Advances in Climate Change Research, 13 (4), 496-506.(影响因子4.746

69. Zhao H, Jia* G, Xu X, Zhang A, 2022: Contrasting responses of vegetation production to rainfall anomalies across the Northeast China Transect, Journal of Geophysical Research: Biogeosciences, 127 (6), e2022JG006842. (影响因子4.432)

70. Luo Meng, Jinming Feng*, Zhongfeng Xu, Jun Wang, Li Dan, 2022: Numerical simulation and cause analysis of persistent summer drought during the 1920s in eastern China. Sci. China Earth Sci., https://doi.org/10.1007/s11430-021-9891-9. (影响因子4.4)

71. Liu Ying Lung, Chi-Yung Tam*, Hang Wai Tong, Kevin Cheung, Zhongfeng Xu, 2022: Investigating future changes in precipitation interannual variability and extremes over Southern China. International Journal of Climatology, https://doi.org/10.1002/joc.7842. (影响因子4.1)

72. Zhang Weiyue, Zhongfeng Xu*, Weidong Guo, 2022: Investigating the relative contribution of anthropogenic increase in GHG and LULCC to Asian climate: a dynamical downscaling study. International Journal of Climatology, https://doi.org/10.1002/joc.7854. (影响因子4.1)

73. Peng, J., F. Yang, L. Dan, and X. Tang (2022), Estimation of Chinas Contribution to Global Greening over the Past Three Decades, Land, 11(3), 393. (影响因子3.905)

74. Ying, K., J. Peng*, L. Dan, and X. Zheng (2022), Ocean-atmosphere Teleconnections Play a Key Role in the Interannual Variability of Seasonal Gross Primary Production in China, Advances in Atmospheric Sciences, 39(8), 1329-1342. (影响因子3.9)

75. Yao Y.*, Zhang W. Q., Luo D. H., Zhong L. H., and P. L., 2022: Seasonal cumulative effect of Ural blocking episodes on the frequent cold events in China during the early winter of 2020/21. Adv Atmos Sci, 39, 609-624. (影响因子3.9)

76. Zhong, L. H., L. J. Hua, Z. H. Gong, Yao Y., and L. Mu, 2022: Quantifying the Spatial Characteristics of the Moisture Transport Affecting Precipitation Seasonality and Recycling Variability in Central Asia. Adv Atmos Sci, 39, 967-984. (影响因子3.9)

77. Qiu Y, Feng J*, Yan Z, Wang J, 2022: High-resolution projection dataset of agroclimatic indicatorsover Central Asia. Advances in Atmospheric Sciences, 39, 1734-1745.(影响因子3.9

78. Liu N, Yan Z, Tong X, Jiang J, Li H, Xia J*, Lou X, Ren R, Fang Y, 2022: Meshless surface wind speed field reconstruction based on machine learning. Advances in Atmospheric Sciences, 39(10), 1721−1733.(影响因子3.9

79. Dai G, Li C, Han* Z, Luo D H, Yao Y, 2022: The nature and predictability of the east asian extreme cold events of 2020/21. Adv. Atmos. Sci., 39, 566-575. (影响因子3.9)

80. Peng Jing, Dan Li, Feng Jinming, Ying Kairan, Tang Xiba, Yang Fuqiang, 2021: Absolute Contribution of the Non-Uniform Spatial Distribution of Atmospheric CO2 to Net Primary Production through CO2-Radiative Forcing. Sustainability, 13, 10897, https://doi.org/10.3390/su131910897. (影响因子3.889)

81. Qin M, Li S, Xue Y, Han Z, 2022: Intraseasonal variability modes of winter surface air temperature over Central Asia and their modulation by Greenland Sea ice and central-Pacific ENSO. International Journal of Climatology, 1-16. https://doi.org/10.1002/joc.7691. (影响因子3.7)

82. Peng, J., L. Dan, X. Tang, and F. Yang (2022), Impact of radiative forcing of spatially varying CO2 concentrations on net primary production, Frontiers in Earth Science, 10. (影响因子3.661)

83. Randriatsara H, Hu* Z, Xu* X, Ayugi B, Sian K, Mumo R, Ongoma V, 2022: Evaluation of gridded precipitation datasets over Madagascar. International Journal of Climatology, 42(13), 7028-7046. (影响因子3.651)

84. Zhao H, Xu X, Jia* G, Zhang A, Wang H, 2022: Antecedent water condition determines carbon exchange response to extreme precipitation events across global drylands, Theoretical and Applied Climatology, 149 (3), 1705-1715. (影响因子3.409)

85. Jiang X L, Ren F M, Qiu W Y, Wu L G, Ma Z G*. Li Xun, 2022: High-resolution numerical simulation of topographic influence on the heavy rainfall of Typhoon Rammasun, Theoretical and Applied Climatology, https://doi.org/10.1007/s00704-022-04224-z. (影响因子 3.409)

86. Zheng Z Y*, L K Ning*, Dai D Q, Chen L, Wang Y L, Ma Z G, Yang Z L, Zhan C S, 2022: Water budget variation, groundwater depletion, and water resource vulnerability in the Haihe River Basin during the new millennium. Physics and Chemistry of the Earth, Parts A/B/C, 126, 103141, https://doi.org/10.1016/j.pce.2022.103141. (影响因子 3.311)

87. Li Z, Shi Y, Argiriou A*, Ioannidis P, Mamara A, Yan Z*, 2022: A Comparative Analysis of Changes in Temperature and Precipitation Extremes since 1960 between China and Greece. Atmosphere, 13 (11),1824.(影响因子3.1

88. Tian Y, Yan ZW, Li Z*, 2022: Spatial and temporal variations of extreme precipitation in Central Asia during 1982-2020. Atmosphere, 13(1), 60.(影响因子3.1

89. Lu, Z., T. Zhao*, W. Zhou, and H. Zhao, 2022: Interdecadal variation of the Antarctic Circumpolar Wave based on the 20CRV3 dataset. Atmosphere, 13, 736. https://doi.org/10.3390/atmos1305073. (影响因子3.1)

90. Qian C*, Ye Y, Chen Y, Zhai P, 2022: An updated review of event attribution approaches. J. Meteor. Res., 36(2), 227-238, doi: 10.1007/s13351-022-1192-5. (影响因子2.569)

91. Zhang X, Duan Y W*, Duan J P, Jian D N, Ma Z G, 2022: A daily drought index based on evapotranspiration and its application in regional drought analyses. Science China Earth Sciences, 65(2): 317-336, https://doi.org/10.1007/s11430-021-9822-y.(影响因子2.058

92. Peng, J., L. Dan, X. Tang, and F. Yang (2022), Trends in carbon sink along the Belt and Road in the future under high emission scenario, Atmos. Oceanic Sci. Lett. (影响因子0.421)

93. Igun E, Xu X, Hu Y, Jia* G, 2022: Strong heatwaves with widespread urban-related hotspots over Africa in 2019. Atmospheric and Oceanic Science Letters, 15, 100195. (影响因子0.421)

94. 符传博,丹利*,刘丽君,佟金鹤,20222019 年秋季三亚市一次典型臭氧污染个例气象成因解析[J]. 生态环境学报, 31(1): 89-99.

95. 符传博*丹利,佟金鹤,徐文帅.台风“浪卡”过程对海南岛臭氧污染的影响分析[J]环境科学,doi: https://doi.org/10.13227/j.hjkx.202206123

96. 符传博*, 丹利, 徐文帅, . 2019 9 月海南省持续臭氧污染天气的气象条件分析[J]. 环境化学, 2022, 4111: 1-12.

97. 符传博*丹利,佟金鹤,徐文帅.热带气旋对海南岛臭氧污染的影响分析[J]环境科学, doi:https://doi.org/10.13227/j.hjkx.202206221

98. 韩云环*马柱国李明星,张安凝知, 2022:中国不同干湿区植被变化及其与气候因子的关系研究,大气科学doi: 10.3878/j.issn.1006-9895.2210.21258.

99.  刘晓琳, 宋宗朋, 靳双龙, 王勃, 滑申冰, 裴琳, 郑子彦*, 2022: 国家电网1980~2020年洪涝危险性的时空变化特征[J]. 气候变化研究快报, 11(1): 32-40, doi: 10.12677/ccrl.2022.111004.

100. 李卓忆, 杨庆*, 马柱国, 陈亮, 张立祯, 2022: 中国北方干旱半干旱区植被对气候变化和人类活动的响应[J]. 大气科学(待刊).

101. 薛媛, 杨庆*, 马柱国, 李超, 王立志, 2022: 1961~2020年中国区域不同等级降水的变化趋势及其可能成因[J]. 大气科学(待刊).

102.  熊喆,宋常青,2022:对流解析区域气候模式对青藏高原降水模拟能力的研究[J]北京师范大学学报(自然科学版), doi:10.12202/j.0476-0301.2022029.

103. 涂锴*严中伟范丽军李珍, 2022:基于动态重现期的极端高温气候评估方法研究[J].气候变化研究进展, 18 (6).

104. 王文杰,钱诚*,张宇,封小凡张嘉仪, 2022: 1961-2020年中国两大林区森林火险天气的多尺度特征[J]. 气候与环境研究, 27(5): 559−577. doi:10.3878/j.issn.1006-9585.2021.21097.

105. 钟洋洋钱诚*2022: 中国地区春霜冻的变化趋势和未来情景预估[J]. 气候与环境研究, 27(1): 50-62. doi:10.3878/j.issn.1006-9585.2021.21162

106. 王卓凡, 韩哲, 李双林, 李国平, 孙雪倩, 2022: 两类El Nino事件盛期南大洋海冰异常的对比分析[J]. 气候与环境研究, 27(3), 11. doi:10.3878/j.issn.1006-9585.2021.21062

107.  张雨琪, 焦瑞莉, 薄宇, 陶益凡, 王立志*, 2022: 基于图像感兴趣区域融合特征的PM2.5浓度预测方法[J].中国环境监测.

 

二、已接收论文

1. Xue et al., (2022). Spring Land Temperature in Tibetan Plateau and Global-Scale Summer Precipitation – Initialization and Improved Prediction, Bulletin of the American Meteorological Society (published online ahead of print 2022). Retrieved Nov 17, 2022. (影响因子9.116)

2. Zhang X, Chen L*, Ma Z G, Zheng Z Y, Meng Y N, 2022: Sensitivity of Heavy Convective Precipitation Simulations to Changes in Land-atmosphere Exchange Processes over China. Journal of Geophysical Research Atmospheres, Accepted. (影响因子5.217)

3. Zha JL, Shen C, Wu J, Zhao DM*, Fan WX, Jiang HP, Azorin-Molina C, 2022: Evaluation and projection of changes in daily maximum wind speed over China based on CMIP6 forcing scenarios. Journal of Climate. (影响因子5.1)

4. Ying Han, Boualem Khouider, 2022Convective Momentum Transport and Multiscale Organization in Simulated Shear Parallel Mesoscale Convective Systems. Climate Dyn., DOI:10.21203/rs.3.rs-2073026/v1. (影响因子4.9)

5. Xiao C, Qian C*, Huang A, Guo R, Xue K, 2022: Evaluation of AMIP models from CMIP6 in simulating winter surface air temperature trends over Eurasia during 19982012 based on dynamical adjustment. Climate Dynamics, DOI: 10.1007/s00382-022-06295-0. (影响因子4.901)

6.   Zheng, F., B. Wu, L. Wang, J.-B. Peng, Y. Yao, H.-F. Zong, Q. Bao, J.-H. Ma, S. Hu, H.-L. Ren, T.-W. Cao, R.-P. Lin, X.-H. Fang, L.-J. Tao, T.-J. Zhou, and J. Zhu, 2023: Can Eurasia experience a cold winter under a third-year La Nina in 2022/23? Adv. Atmos. Sci., doi: 10.1007/s00376-022-2331-8. (影响因子3.9)

7. Li M X*, Ma Z G, Wu P L, Liu J D, Lv M X, Yang Q, Huan Y H, 2022: Ecological Response to Climate Change across China from Combined Soil Temperature and Moisture Changes. Earth and Space Science, Accepted. (影响因子3.68)

8.   顾阔, 焦瑞莉, 薄宇*, 刘帅强, 王立志, 基于复合LSTM模型的PM2.5浓度预测. 中国环境监测.

9.  古再丽努尔.亚森, 张京朋, 赵天保*, 2022:CMIP6多模式对21世纪中亚极端降水未来变化预估.气候与环境研究doi:10.3878/j.issn.1006-9585.2022.22021.