罗德海,男,1963年生,博士,研究员(二级),博士生导师
现主要从事大气动力学,海洋动力学和气候动力学的研究工作,
在国内外刊物上发表论文数十篇,专著两部。通过一定的数学技巧
巧妙地将行星尺度波与天气尺度波联系起来,在国际上创造性地
提出和建立了大气阻塞和北大西洋涛动(NAO)形成的行星尺度波与
天气尺度波相互作用新的解析理论模式,并在国际顶尖刊物上发表了
一系列论文(Quart. J. Royal Meteoro. Soc.,2005a, J. Atmos. Sci., 2005b-e,
2006,2007a-c,, 2008a-b,2010a-b)为阻塞和NAO问题的解决开辟了一个
新的途径。
同时利用我们的理论模式理论上证明在强的大西洋storm track(CO2增多)强迫作用下,NAO能从正位相转换成负位相,从而使CO2所引起北半球的增暖能得到部分抑制(J. Atmos. Sci., 2011)。
获得的奖励和荣誉:
1996年第五届中国青年科技奖,
2000年第二届教育部青年教师奖.
2000年国家政府津贴获得者,青岛市拔尖人才
2003年山东省高等学校学科带头人
2003年国家杰出青年科学基金获得者。
2005年山东省泰山学者特聘教授
学习和工作经历:
1982年9月-1985年7月,成都气象学院 (现成都信息工程学院)气象系,本科学习
1985年9月-1988年9月,中国科学院大气物理研究所,硕士研究生
1988年9月-1997年5月,成都气象学院气象研究所,副研究员,研究员(1995年)
1997年5月-2002年10月,中国海洋大学海洋环境学院,教授(期间获在职博士学位),博士生导师
2002年10月-2003年10月,加拿大多伦多大学物理系,访问教授。
2003年10月-2007年10月,中国海洋大学海洋环境学院,教授,博士生导师
2007年10月-2008年1月,香港城市大学,访问教授
2008年1月-2010年11月,中国海洋大学海洋环境学院,教授,博士生导师
2010年11月-至今,中国科学院大气物理研究所,研究员,博士生导师
现主持的基金项目:
国家自然科学基金项目“尺度相互作用与中高纬度地区大气低频模态的动力学”
2011年1月-2013年12月(50万)
主要的研究领域:
(1)大气动力学: 阻塞和北大西洋振荡(NAO)的动力学和观测资料研究,
风暴路径动力学和观测资料研究。
(2)海洋动力学:大洋环流,中高纬度地区海洋-大气年代际相互作用,
海洋涡旋的动力学及与大尺度海洋环流的相互作用。
学术团体兼职:
<<气象学报>>编委, <<中国科学-地球科学>>编委
以下国际刊物的审稿人:
<<J. Atmos. Sci.>>, <<J. Climate>>, <<Quart. J. Roy. Meteoro. Soc.>>, <<Geophys. Res. Lett.>>,
<<J. Geophys. Res.>>等。
1999年后部分代表性国际论文(SCI):
(35) D. Luo, Y. Yao, S. Feldstein and S. Lee, 2012: Regime transition of the North Atlantic Oscillation and
extreme cold events over Europe: The winter of 2011/2012.
(34) D. Luo and S. Ren, 2012: Impact of the SST-wind stress coupling on thedynamics and stability of ocean
current inside and outside SST frontal zones, Dyn. Atmos. Oceans (in revision)
(33) Jiang, Z., M. Mu and D. Luo, 2012: Dynamics of North Atlantic Oscillations identified by using the
conditional nonlinear optimal perturbation method. J. Atmos. Sci. (in revision)
(32) T. Gong, S. Feldstein and D. Luo, 2012: A simple GCM model study on the relationship between ENSO
and the Southern Annular Mode. J. Atmos. Sci. (submitted)
(31) D. Luo, J. Cha, S. Lee and S. Feldstein, 2012: The North Atlantic Oscillation and the North Atlantic jet
variability: A dynamical link. J. Atmos. Sci. (submitted)
(30) D. Luo, and J. Cha, 2012: The North Atlantic Oscillation and the North Atlantic jet variability:
Precursors to NAO regimes and transitions. J. Atmos. Sci. (in revision)
(29) D. Luo, J. Cha and S. Feldstein, 2012b: Weather regime transitions and the interannual variability of
the North Atlantic Oscillation. Part II: Dynamical processes. J. Atmos. Sci. (in press)
(28) D. Luo, J. Cha and S. Feldstein, 2012a: Weather regime transitions and the interannual variability of
the North Atlantic Oscillation. Part I: A likely connection. J. Atmos. Sci. (in press)
(27) D. Luo, Y. Diaoand S. B. Feldstein,2011: The variability of the Atlantic storm track activity and North
Atlantic Oscillations: A link between intraseasonal and interannual variability, J. Atmos. Sci., 68,
577-601.
(26) D. Luo, L. Zhong, R. Ren and C. Wang, 2010b:Spatial pattern and zonal shift of the North Atlantic
Oscillation. Part II: Numerical experiments. J. Atmos. Sci., 67, 2827-2853
(25) D. Luo, Z. Zhu, R. Ren, L. Zhong and C. Wang, 2010a:Spatial pattern and zonal shift of the North
Atlantic Oscillation. Part I: A dynamical interpretation. J. Atmos. Sci., 67, 2805-2826.
(24), T. Gong, S. B. Feldstein and D. Luo, 2010: The impact of ENSO on wave breaking and Southern
annular mode events. J. Atmos. Sci.,67, 2854-2870
(23) D. Luo, W. Zhou, and K. Wei, 2010: Dynamics of eddy-driven North Atlantic Oscillations in a
localized shifting jet: zonal structure and downstream blocking, Climate dynamics,34, 73-100.
DOI 10.1007/s00382-009-0559-y.
(22)Wang, Y., S. Li, and D. Luo, 2009, Seasonal response of Asian monsoonal climate to the Atlantic
Multidecadal Oscillation, J. Geophys. Res., 114, D02112, doi:10.1029/2008JD010929
(21) D. Luo, T. Gong and L. Zhong, 2008b: Dynamical relationship between the phase of North Atlantic
Oscillations and meridional excursion of a preexisting jet: An analytical study. J. Atmos. Sci., 65,
1838-1858
(20)D. Luo, T. Gong and Y. Diao, 2008a: Dynamics of eddy-driven low-frequency dipole modes.
Part IV: Planetary and synoptic wave breaking processes during the NAO life cycle.
J. Atmos. Sci., 65, 737-765.
(19) D. Luo, T. Gong , Y. Diao and W. Zhou, 2007: Storm tracks and Annular Modes. Geophys. Res. Lett..,
34, L1780110.1029/2007GL030436.
(18) D. Luo, T. Gong and Y. Diao, 2007c: Dynamics of eddy-driven low-frequency dipole modes. Part III:
Meridional shifts of westerly jet anomalies during two phases of NAO. J. Atmos. Sci. 64,3232-3243.
(17)D. Luo, T. Gong and A., R. Lupo, 2007b: Dynamics of eddy-driven low- frequency dipole modes. Part II:
Free mode characteristics of NAO and diagnostic study. J. Atmos. Sci., 64, 29-51.
(16)D. Luo, A., R. Lupo and H. Wan, 2007a: Dynamics of eddy-driven low- frequency dipole modes. Part I:
A simple model of North Atlantic Oscillations. J. Atmos. Sci., 64, 3-28.
(15) D. Luo and T. Gong, 2006c: A possible mechanism for the eastward shift of interannual NAOaction
centers in last three decades. Geophy. Res. Lett., 33, L24815, doi:10.1029 /2006G L027860.
(14)D. Luo and Z. Chen, 2006b: The role of land-sea topography in blocking formation in a block-eddy
interaction model, J. Atmos. Sci.,63,3056-3065.
(13) Y. Diao, J. Li and D. Luo, 2006a: A new blocking index and its application: Blocking action in
the Northern Hemisphere, J. Climate, 19, 4819-4839.
(12) D. Luo and H. Wan, 2005g: Decadal variability of wintertime North Atlantic and Pacific blockings:
A possible cause, Geophys. Res. Lett., 32, L23810, doi: 10. 1029/2005GL024329.
(11) D. Luo, 2005f: Why is the North Atlantic block more frequent and long-lived during the negative NAO
phase, Geophys. Res. Lett., 32, L20804,doi:10, 1029/ 2005GL022927.
(10) D. Luo, 2005e: A barotropic envelope Rossby soliton model for block-eddy interaction. Part IV:
Block activity and its linkage with sheared environment, J. Atmos. Sci. 62, 3860-3884
(9) D. Luo, 2005d: A barotropic envelope Rossby soliton model for block-eddy interaction. Part III:
Wavenumber conservation theorems for isolated blocks and deformed eddies, J. Atmos. Sci., 62,
3839-3859
(8) D. Luo, 2005c: A barotropic envelope Rossby soliton model for block-eddy interaction. Part II:
Role of westward-traveling planetary waves, J. Atmos. Sci., 62, 22-40.
(7) D. Luo, 2005b: A barotropic envelope Rossby soliton model for block-eddy interaction. Part I:
Effect of topography, J. Atmos. Sci., 62,5-21.
(6) D. Luo, 2005a: Interaction between envelope soliton vortex pair block and synoptic-scale eddies
in an inhomogeneous baroclinicity environment, Quart. J. Roy. Meteoro. Soc. ,131, 125-154.
(5) D. Luo, Huang F. and Y. Diao, 2001: Interaction between antecedent planetary- scale envelope
soliton blocking anticyclone and synoptic-scale eddies: Observations and theory. J. Geophys. Res.
Vol. 106, 31795—31816.
(4) D. Luo, 2001: Derivation of a higher order nonlinear Schrödinger equation for weakly nonlinear Rossby
waves, Wave Motion, 33,339-347..
(3) D. Luo and Y. Lu, 2000: The influence of negative viscosity on wind-driven ocean circulation in a
subtropical basin, J. Phys. Ocean.,30,916-932 .
(2) D. Luo, 2000: Planetary-scale baroclinic envelope Rossby solitons in a two- layer model and their
interaction with synoptic-scale eddies. Dyn. Atmos. Oceans, 32, 27-74.
(1) D. Luo, 1999, Near-resonantly topographically forced envelope Rossby solitons in a barotropic flow.
Geophys. Astrophys. Fluid Dyn., 90, 161-188.